
I

res# And €valuaf;on by -
Genetie Algorithms
Alan C. Schultz, John J. Grefenstette, a i d Kenneth A. De Jong
Navy Center for Applied Research in Artificial Intelligence

require sophisticated software controllers.
Given a vehicle simulation and an intelli-
gent controller for that vehicle, what meth-
ods are available for testing the controller’s
robustness? Validation and verification are
not enough: The controller might perform
as specified, but the specifications could be
incorrect: that is. the vehicle might not be-
have as expected. Testing all possible situ-
ations is obviously intractable. And tech-
niques for testing isolated, low-level controllers
do not apply to the vehicle as a whole.’

Also, traditional controller tests are la-
bor intensive and time consuming. Some
methods require simulated vehicle mis-
sions to test the controller’s robustness
under various conditions. After designing
a fcrult scrrirrrio that will cause particular
failures during a simulated mission, the
test engineers observe the vehicle’s result-
ing behavior and then refine the fault sce-
nario to better exercise the controller. This
cycle is repeated until the engineers are
confident that the vehicle’s behavior will
be appropriate in the field. Implicitly, the
engineers are searching for interesting fault
scenarios.

We propose a machine learning tech-
nique to automate this process: We subject
a controller to an adaptively chosen set of

THIS APPROACH USES MACHINE LEARNING TECHNIQUES TO
E VALUATE A UTONOMOUS- VEHICLE SOFTWARE

CONTROLLERS. A SET OF SIMULATED FAULT SCENARIOS IS
APPLIED TO A CONTROLLER, AND A GENETIC ALGORITHM

SEARCHES FOR SIGNIFICANT COMBINATIONS OF FAULTS.

fault scenarios in a vehicle simulator, and
then use a genetic algorithm to search for
fault combinations that produce note-
worthy actions in the controller. We have
applied this approach to find a minimal set
of faults that produces degraded vehicle
performance, and a maximal set of faults
that can be tolerated without significant
performance loss.

Fault scenarios

Afault.sce.ncrrio is a description of faults
that can occur in a vehicle, and the condi-
tions under which they will occur. It can
also include information about the envi-
ronment in which the vehicle is operating.
Each scenario has two main parts (see
Figure I) . The initid conditions give start-

ing states for the vehicle and environment,
such as initial speed, attitude, position, and
so on. The fault rules map current condi-
tions to fault modes.

Each fault rule also has two parts. The
rriggers on the left represent the conditions
that must be met for the fault to occur.
Each trigger measures some aspect of the
cur ren t s ta te of t h e vehic le , the e n v i -
ronment , or o ther fau l t s tha t might be
ac t iva ted at that time. A trigger has a low
and a high value; i f the measured quantity
is within the trigger’s range, that trigger
is “satisfied.” When all triggers in a rule
are satisfied, the,fciulr mode (the right side
of the rule) is instantiated in the vehicle
simulation. Each fault mode also has two
parts: The fault type describes the vehicle
subsystem that will fail, and the,fiult level
describes the failure’s severity. Thus, after

\

Trigger 1 Trigger 2 Trigger 3 Trigger m 1 Fault mode

/
/

I Low value High value

Figure 1. Representation of a fault scenario.

E l Fault type 1 Fault level

If -63.00 <= velocity [XI <= 64.00
-56.00 <= velocity [y] <= -28.00

-254.00 <= velocity [z] <= -224.00
-16,220 <= position [XI <= -860

13 <= position [y] <= 832
2,040 <= position [z] <= 2040
-325 <= pitch <= 635

-1,370 <= yaw <= -100
-900 <= roll <= -857

7 <= elapsed time <= 2,016
0 <= last fault <= 2,044
0 <= thrust <= 72

16 <= flaps <= 40
M-drag = NA
C-flaps = NA

S-azimuth = NA
C-elevator = NA

C-rudder = Clear

S-elevation = NA
C-rollers = Set
S-roll = NA

Then Set fault type = S-roll
Set fault value = -0 232

* * * R u l e 2 * * * * * * * * * * * * * + * * * * *

II

And
And
And
And
And
And
And
And
And
And
And
And
And
And
And
And
And
And
And
And

______ ______ ~ _ _ _ _ _

~igure 2. Part of a fault scenario file.

reading the initial conditions and setting
t h o x I ariablc\. the \ysteiii examines each
rule at each \imtiliited time step to w e i f

10

any triggers are sati5fied: if they are, i t
instantiates that rtilc'j fault mode with the
given amount of degradation.

~ ~~

Evaluating a fault scenario. When test
engineers search for interesting fault sce-
narios. they apply an evaluation criterion
to measure each scenario'\ usefulness. To
automate the search process. we must ex-
plicitly define an e \ aluation function that
can mea\ure the fitness of each scenario.
This can be d i ffi c u I t . becn ti se e val LI at i on
criteria are often based on informal judg-
men t s .

One approach meastire\ the difl'erencc
between the controller's actual performance
in ;I scenario against some form of ideal
response. The ideal response could be ap-
proximated based on knowledge of the
causal assumption behind the fault mode
(that is, a certain sensor has failed and
should be recalibrated or ignored). or i t
could be based on an expert controller's
actions. or i t could simply be to return to
nominal performance of the mi3sion plan
in the least amount of time. Computing the
ideal re s pon se in i g ht rcq ti i rc in formation
that is n o t available to the controller. Al-
though this approach i s a more uitoninted
"ay to identify problem areas for the con-
troller. i t also require\ :I substantial effort
to design software that can compute ideal
responses.

A second approach nie;isiires fi tnesj
based on the likelihood and severity of
fault conditions. The highest fitncs\ indi-
cates thc most likely set of faults that cau\e
the controller to degrade to a specified
level. This approach is useful i f probability
estimates of the various fault modes Lire
available when the evaluation function i \
being constructed. Unfortunately. inany of
the fault modes that longendurance auton-
oinous vehicles would encounter are of
low probability and have the same order of
magnitude. Therefore. this approach would
not work in practice.

A third approach rewards fault scenarios
occurring o n the boundary of the control-
ler's performance space. That is. a set of
fault rules would receive a high fitlies5
rating if i t causes the controller to degrade
sufficiently. but some minor variation would
not. This fitness function would help us
identify "hot spots" in the controller's per-
formance space. but we wotild have to
cbaluate several scenarios for each faul t
specification. and each evaluation would
rcq u i re a C O ni pl ete in i si on si mu I a t i on.
Depending on the computation cost. this
approach might not be feasible.

A fourth approach defines and searche5

IEEE EXPERT

I

the elevators, rudder, ailerons, or flaps
might fail to reach a commanded angle
The fault level is a percentage of the total
range for that actuator For example, since
the normal range for flaps is 0" to 40°, a 10-
percent fault level is 4" positive error,
while a fault level of - 10 percent would
yield an actuator set 4' lower than expected

Sentor fnultr are failure5 of vehicle sen-
s o n or detectors When the controller tries
to read a sensor, i t receives erroneous in-
formation either because of noise or sensor

for interesting scenarios. There are several
ways to define "interesting" in the context
of an intelligent controller, each producing
a separate function. One interesting class
of scenarios are those in which minimal
fault activity causes a mission failure or
vehicle loss. The dual of that class com-
prises scenarios in which maximal fault
activity still permits a high degree of mis-
sion success. Using this approach, we im-
plemented an evaluation function for the
automated testbed: Maximizing this func-
tion produces fault scenarios that yield a
minimal level of fault activity, while min-
imizing this function finds fault scenarios
that allow a high level of fault activity that
can still be tolerated without significant
performance loss.

free state, so they would be modeled as
nonpersistent On the other hand, increased
drag due to damage cannot be undone and
is modeled as a persistent fault

Trigger conditions. In our AutoAce
1 experiments, each fault rule has 2 1 triggers

(1 -3) components of the velocity vector
(.a, \, and z) ,

(4-6) absolute position in space (x, 1, and z) ,
(7-9) attitude (pitch, yaw, and roll),
(I 0) flap setting,

Autonomous vehicles

Our end goal is to evaluate the robust-
ness of an autonomous underwater vehi-
cle, but the full-scale AUV was not avail-
able in the early stages of developing this
technique. Our initial development there-
fore focused on a controller for an autono-
mous air vehicle, although the general
method can be applied to AUVs as well.
The domain involved a medium-fidelity.
three-dimensional simulation of a jet air-
craft that flies to and lands on an aircraft
carrier and is guided by an intelligent con-
troller. The simulation, called AutoAce.
can also control environmental conditions.
including constant wind and wind gusts.

The autonomous controller, which flies
the aircraft and lands it on the deck. was
designed using a subsumption-based ar-
chitecture.? The controller is composed of
individual behaviors, operating at differ-
ent levels of abstraction, that communicate
among themselves. Top-level behaviors in-
clude ,fly-cruft and /und-c.ruft. At a lower
level. behaviors include , flyheading and
fly-ulritude. The lowest level behaviors
include hold-pitch and adjust-roll. After
the initial design, optimization techniques
were used to improve the controller such
that it could successfully fly and land the
aircraft in constant wind and in wind gusts.

Modeling faults. We introduced three
classes of faults into the simulation. A
contro1,fkult occurs when an actuator fails
to perform an action commanded by the
controller. In the control faults we modeled,

a fault should be instantiated. Figure 2
shows part of a fault scenario file for the

'

COLLECTING A LARGE
NUMBER OF INTERESTING AutoAce system.

FAULT SCENARIOS THAN IN
FINDZNG THE SINGLE, MOST
INTERESTING ONE.

Setting initial conditions. We modified
the simulator to read a fault scenario file at
startup. The first group of items in the file
are the initial conditions, which describe

pitch, yaw, and roll sensor faults. For ex-
ample, a pitch sensor fault represents a
failure in the sensor that determines the
vehicle's current pitch in degrees from the
horizon. The fault level for a sensor fault is
expressed as a percentage of ? I 80°, since
that is the total range these sensors might
return. Thus, a fault degradation of -10
percent in the pitch sensor means that the
reported value is 18 degrees below the
actual one.

Model fuulrs are not directly related to
sensors or actuators; they usually involve
physical aspects of the vehicle. For exam-
ple, a leak in an AUV is a model fault. The
current simulation has only one model fault,
which represents increased drag due to
vehicle damage. I n general, the fault level
depends on the type of model fault. In the
case of drag, degradation is expressed as a
percent increase in drag, from none to an
amount that is reasonable in this domain.

In addition to these three classes, faults
can be identified as persistent or nonper-
sistent. Persistent faults do not cease, while
nonpersistent ones must be reinstantiated
at each time step to continue. For example,
actuators and sensors tend to have inter-
mittent failures and can return to a fault-

the environment and the aircraft's starting
configuration. We restricted the range of
initial conditions so that no setting by itself
could cause the vehicle to fail; all aircraft
failures had to come from the instantiation
of vehicle faults. When the simulation starts,
the aircraft begins its mission approxi-
mately two nautical miles from the carrier
and then proceeds to land. The initial con-
ditions are

constant wind speed (knots);
wind direction (degrees):
initial altitude (feet);
initial distance from the carrier (nautical
miles):
horizontal offset (in feet), or how well
the aircraft is lined up with the carrier
(zero means i t is perfectly lined up); and
initial forward velocity (feet per second).

Genetic algorithms

To search for fault scenarios, we use a
class of learning systems called genetic
ci1gorirhni.s (described in this issue's intro-
duction o n pages 5-8 and e l ~ e w h e r e ~ . ~) .
A GA simulates the dynamics of popula-
tion genetics by maintaining a knowledge

11
-

OCTOBER 1993
_ _ _ _ _ _ _ _ _ ~ ~

rigure 3. Using a genetic algorithm to test an intelligent controller.

base of fault scenarios that evolves over
time in response to the vehicle’s simulated
performance. An evaluation function cap-
tures the structure’s fitness, as described
earlier. The search proceeds by repeatedly
selecting fault scenarios from the current
population based on fitness. That is, high-
performing structures can be chosen sever-
al times for replication. while poorly per-
forming structures might not be chosen at
all. Next. the algorithm constructs plausi-
ble new fault scenarios (o f j ~ p r i n g) by ap-
plying idealized genetic search operators
to the selected structures. For example,
cro.s.soi’cr exchanges pieces of scenario
representations to create new offspring,
and r i i i r f r i i i o r i makes small random changes
to the scenarios. The GA evaluates the
new fault scenarios in the next iteration
(generation).

The applitation

Figure 3 shows how we used GAS to test
controller performance. Given a vehicle
simulator and an intelligent controller, the
GA automatically evaluates many scenar-
ios and searches for interesting ones.

When applying a GA to a particular
problem. i t i s often necessary to tailor the
algorithm to a chosen representation lan-
guage. and to develop new genetic opera-
tors that take advantage of available do-
main knowledge. Using the fault scenario
representation discussed earlier. each mem-
ber of the population represents a single
fault scenario. and has the form

s .\ .__ .s r r ... r

where each s i s a simulation parameter
specifying an initial condition, and each r

i s a fault rule of the form t r igger& trigger
&...& trigger + f a u l t niode.

GAS are often used to find a single near-
optimal point in a search space. For this
project, we were more interested in col-
lecting a large number of interesting fault
scenarios than in finding the single, most
interesting one. In our initial experiments,
we accomplished this by stopping the GA

identifying interesting weaknesses in the
controller. On the other hand, minimizing
the function searches for controller suc-
cesses in light of significant vehicle fail-
ures. This allows us to characterize the
controller’s robustness with respect to gen-
eral classes of faults.

Fault activity measures the level of faults
introduced over the entire mission. To cal-
culate this, we normalize the absolute value
of the active fault levels during a given time
step so that they are between 1 and 10, and
then take the product:

cirrrcvit,fault activity =

n((l ,fault /eve/ I x 9.0)+ I .o)
(r(.ril,e rill?\

Then we calculate the average fault activ-
ity over the entire mission:

tirne

Using such factors as the distance from
center line, the roll angle at touchdown,
and the velocity of descent, the simulator
returns a score based on the quality of the
landing:

if crash landing

if abort

Thus, a score of I O indicates a perfect
landing. We now combine the fault activity
and the score:

when convergence reached a predefined
level. This meant that the final population
still represented a widely diverse set of
fault scenarios. We also tried having the
system record the best individuals from
each generation. I t i s also possible to keep
a record of all scenarios tested, and then
apply a postprocessor to search for diverse.
interesting ones.

Another important consideration in-
volved generating an initial population of
fault scenarios. To have enough active faults,
we had to force a large degree of generality
in the triggers of the initial population’s
fault rules. We introduced a parameter that
adjusted the percentage of triggers that
were initially set to their full range. By i
tuning this parameter, we ensured that all
the initial scenarios had at least some fault
activity. This gave the GA sufficient infor-
ination to construct more interesting sce-
narios over the course of the run.

e v d = I / @ u / r activity x score)

With no faults and acrash landing (actual-
ly, this i s impossible), eval returns I , the
maximum possible value. With maximal
fault levels throughout the mission and a
perfect landing, eva/ returns 0.01, the min-
imum possible value. The evaluation function. A GA’s fit-

ness function measures the usefulness of
arbitrary points in the search space defined Experimental results. In all our ex-
by the representation language. For these periments, we used a population size of
experiments, we defined a function that 100 and ran the GA for 100 generations,
gives high ratings to scenarios that induce resulting in 10,000 evaluations. We first
the controller to perform interesting be- maximized the fitness function to find sev-
haviors. Maximizing the evaluation func- ~ eral minimum-fault , maximum-failure
tion searches for controller failures in the scenarios. Figure 4 shows a learning curve
face of minimal aircraft problems, thus , for arepresentative experiment: T h e x a x i s

represents the number of trials, and the y
axis represents the average value returned
by the function for all fault scenarios in
that generation. The GA quickly homed in
on scenarios with high fitness, that is, sce-
narios where minimal fault activity led to
controller failure.

By examining the scenarios identified by
the GA as interesting, we drew the follow-
ing conclusions about the controller:

Roll control is most critical as the air-
craft starts to touch down.
Sensor errors are much harder to recover
from than are control errors.
Even slight increases of drag cause the
controller to behave poorly.

Next. we minimized the evaluation func-
tion to search for successful flights despite
significant vehicle failures. We were able
to characterize the controller’s robustness
with respect to some general classes of
faults:

The G A again found that the controller
can recover from control faults, but that
sensor faults are much harder to handle.
Recovering from faults that affect air-
craft pitch is easier than recovering from
faults affecting its roll. This agrees with
the earlier observation.
The GA identified situations in which i t
is possible for some faults to “cancel”
out the effects of other faults (for exam-
ple, positive sensor errors might offset
negative control errors).

In more of a qualitative affirmation of
our method. we showed the designer of the
AutoAce controller some of the interesting
scenarios generated by the GA. The de-
signer acknowledged that these scenarios
provided some insight into parts of the
intelligent controller that could be improved.
In particular. the scenarios as a group tend-
ed to indicate classes of weaknesses. as
opposed to highlighting single weakness-
es. This allows the designer to improve the
controller’s robustness over a class as op-
posed to only patching specific instances
of problems.

0 UR APPROACH T O FITNESS,
based on the extent to which fault activity
i n f l u e n c e s miss ion p e r f o r m a n c e , i s

OCTOBER 1993
~ ~ ~ _ _ ~ - ~ ~ - ~ ~ - ~ ~

~ ~ ~-~ ~- ~ ~ - ~ -

W

0.4

0.2

0.1
1

1 I I

0 10 20 30 40 50 60 70 80 90 100
Generations

Figure 4. The learning curve for maximizing the evaluation function.

promising. It offers advantages over man- 1 References
ual testing of sophisticated software con-
trollers, although i t should supplementrath-
er than replace other forms of software
validation. The method can be applied to
intelligent controllers for autonomous un-
derwater, ground, or air vehicles; the basic
approach stays the same.

We are also examining other evaluation
functions to find more scenarios of interest
to designers of vehicle controllers. We
plan to apply these techniques to AUV
controllers in the near future.

Onanother front, we arelooking atchang-
ing the GA to improve its search for fault
scenarios. One area we are examining is
the use of SIiCIrjizS,fUtIC.~jOiiS to help main-
tain diversity in the population.8 These
techniques should force the GA to cover
some of the better solutions with apercent-
age of the population instead of converg-
ing to a single maximum, in essence mak-
ing the population share the payoff. This is
important in situations where the simula-
tion time becomes excessively long.

W e have also begun to explore the use of
heuristic mutation operators. For example,
new operators will use information record-
ed during fault scenarios to trigger the
generalization and specialization of fault
rules. W e expect this to result in more
scenarios that are useful and good solu-
tions that are identified more quickly.

I . E. Applehy. W . Bonnice. and N. Bedros-
sian, “Robustness Analysis Methods for
Underwater Vehicle Control Systems.’‘
Proc. Synzp. or7 Aufor7oniort.s Ur7det~i~uter
Vehiclr Techizologv, IEEE, Piscataway. N.J.,
1990, pp. 74-80.

2. R.L. Hartley and F.J. Pipitone, “Experi-
ments with the Subsumption Architecture.’’
Proc. 1991 IEEE I r i l ’ l Cor$ Robotic,., trrid
Autorizution, IEEE Comp. Soc. Press. Los
Alamitos. Calif.. 1991. pp. 1.652-1,659.

3. J.H. Holland, Adupfuriori i / i Nutirr-crl (t d
ArrficinlS\sfrr?i.v, Univ. of Michigan Press,
Ann Arbor, 1975.

4. K.A. De Jong, “Adaptive System Design:
A Genetic Approach,” IEEE Trcriis. Sys-
tems. Mun, tiridC~hernrtic~.s. Vol. SMC-IO.
No. 9, 1980, pp. 566-574.

5 . J . J . Grefenstette, C.L. Ramuey, and A.C.
Schultz, “Learning Sequential Decision
Rules Using Simulation Models and Com-
petition,”Muckinr Lectrriirig, Vol. 5. No. 4,
Oct. 1990, pp. 355-381.

6. A.C. Schultz and J.J. Grefenstette, “Using
a Genetic Algorithm to Learn Behaviors
for Autonomous Vehicles,” Pmc. AlAA
Gui(lurm,, NuviKution, rind Con fro/ Cor$.
American Inst. for Aeronautics and Astro-
nautics. Washington, D.C., 1992, pp. 739-
749.

7. A.C. Schultz, “Using a Genetic Algorithm
to Learn Strategies for Collision Avoidance

13
~~

~~~~~~ ~~~ ~ -~ ~ 

T I -  



ARTIFICIAL 

Lockheed Missiles & Space Company’s 
Artificial Intelligence Center in Palo Alto has 
positions immediately available for program- 
mers in the following areas: 

DATA COMPREHENSION 
Multimedia data analysis, including deductive 
database, image classification, massively 
parallel software and data visualization. 

AUTONOMY 
User interfaces, real-time computing hardware, 
and real-time mission planning. 

COMPUTATIONAL WORK 
ENVIRONMENTS 

Intelligent systems in the design and manufactur- 
ing domain, distributed AI systems, systems 
involving multimedia and groupware technology, 
and engineering knowledge representatin. 

To qualify for these positions, you must have a 
BS (MS preferred) in Computer Science or 
related area. The work will involve development 
of object-oriented systems, X-Window applica- 
tions and 3D Graphics. Preferred candidates 
will have significant experience in C, C++, 
GUI development, and the ability to develop 
systems on a Sunm or Silicon Graphicsm 
workstation. 

For consideration, please send your resume to 
Herman Ficklin, Lockheed Missiles & Space 
Company, Professional Staffing, Dept. 
XPERllNHF, P.O. Box 3504, Sunnyvale, CA 
940883504, Lockheed is an equal opportunity, 
affirmative action employer. 
All trademarks are registered to their respective 
companies. 

Missiles& %ace Company 

~ 

I Synp U ~ U ~ t ~ r ~ S ~ ~ ~ ~ ~ T e c ~ ~ ~ , U N v . o ~ e w ~ ,  
and Local Navigation,” Proc. Seventh Inr’I 

Durham, N.H., 1991, pp. 213-225. 

~ 8. K.  Deb and D.E. Goldberg, “An Investigation of Niche and 
Species Formation in  Genetic Function Optimization,” Proc. 
Third Int’l Conf Generic Algorithms, Lawrence Erlbaum Associ- 
ates, Hillsdale, N.J., 1989, pp. 42-50. I 

Alan C. Schultz is a computer scientist in the 
Machine Learning Section at the Navy Center 
for Applied Research in Artificial Intelligence. 
which is part of the Naval Research Laborato- 
ry. He is also a doctoral candidate in informa- 
tion technology at George Mason University. 
His research involves genetic algorithms, learn- 
ing in robotic systems, experience-based learn- 
ing, and adaptive systems. He received his MS 
in computer science at George Mason Univer- 
sity in 1988, and his BA in communications 

from American University in 1979. He is a member of IEEE, the IEEE 
Computer Society, AAAI, ACM, and the International Society for 
Genetic Algorithms. 

John J. Grefenstette is headofthe Machine 
Learning Section at the Navy Center for 
Applied Research in Artificial Intelligence. 
His research interests include machine learn- 
ing, genetic algorithms, and autonomous 
systems. He serves on the editorial boards of 
Machine Lrurning, Adaptive Behuvior, and 
Evolutionary Computurion, and is a member 
of the IEEEComputer Society, AAAI, and the 
International Society for Genetic Algorithms. 
He received his BS in mathematics from 

Carnegie Mellon University in 1975 and his PhD in computer science 
from the University of Pittsburgh in 1980. 

, 
~ 

Kenneth A. De Jong is associate professor 
of computer science at George Mason Uni- 
versity, and was with the Naval Research 
Laboratory when this research was per- 
formed. His research interests include adap- 
tive systems, machine learning, expert sys- 
tems, and knowledge representation He is 
editor-in-chief of Evolutionary Computation 
He received his BA in mathematics from I 
Calvin College, and his MA in mathematics, 
MA in computer science, and PhD in computer 

’ 

science from the University of Michigan. 

I 
The authors can be reached in  care of Alan Schultz at the Navy 

Center for Applied Research in Artificial Intelligence (Code 55 14), 
Naval Research Laboratory, Washington, DC 20375-5000; e-mail, 
schultz@aic.nrl.navy.mil 

IEEE EXPERT 

mailto:schultz@aic.nrl.navy.mil

